Airborne Networks: Beyond Connectivity

Yiyuan Zhao University of Minnesota

Maggie Cheng University of Missouri, Rolla

Outline

- Air Traffic Management: ADS-B to Airborne Networks
- Network Connectivity vs. Information Reachability
- Fundamental Performance Measures
- Airborne Network Protocol Design
- Simulation Studies
- Conclusions

Airborne Network Concept

ADS-B:

- Each aircraft only broadcasts its own state information
- Only aircraft within radio transmission range can hear

Airborne network:

- Each aircraft periodically broadcasts its own state info as well as relays information for other aircraft;
- Every aircraft can know every other aircraft's states

State of the Art in Airborne Networks

- Airborne internet:
 - Broadband, providing email access for passengers
- Future airborne networks:
 - Airborne domain of the Global Information Grid
 - Provide user connectivity to an integrated air, ground, maritime and space network backbone;
 - Provide information routing, protocol translation, security and network management
- Airborne networks for air flight operations
 - Values of airborne networks to air traffic management?
 - Values of airborne networks to UAV operations?
 - What needs to be done?

Airborne Networks for Flight Operation

Basic requirement: connected

- Previous results:
 - coverage area is increased
 - Connectivity depends on network topology
 - Aircraft position, radio range, antenna direction
 - Independent of network protocols

The Concept of Reachability

- "Connected" Is Not Good Enough
 - It does not provide enough info about network performance
 - Due to collision, info may never reach the destination
 - bottle neck link
 - Due to delay, information may arrive late
 - circular topology: too many hops, but distance short
- Reachability: Info reliably arrives within a specified time
 - Factors that influence reachability
 - Network topology, Network protocols
 - How to measure it?
 - New performance criteria needed
 - specifically, situational awareness

Proposed Performance Measures

- Standalone measures
 - Ratio of reachable/connected: a measure of collision probability
 - The higher the ratio, the lower the collision probability
 - # of reachable in a cluster/# of reachable within one hop
 - Practical gain of using airborne network vs. non-networked schemes
- Situational awareness index
 - Percentage of nodes within a specified range around an aircraft whose state info can be received by the aircraft within required time

MAC Protocol Design

- Available MAC design choices:
 - CSMA/CA: Reservation/conformation?
 - → not applicable in broadcast
 - CSMA
 - Can not guarantee one transmission per cycle
 - Collision still possible, "hidden terminal problem"
- Proposed: Hash-controlled access with slotted contention window
 - Guarantee one transmission per cycle
 - Collision still possible Best effort
 - May cause more collisions than CSMA, but better information reachability

MAC Protocol Design (cont'd)

- Time slots allocation in a MAC cycle
 - Broadcast: state information "flooding"
 - Unicast: point-to-point query/response
 - Reserved: ground communication

MAC Protocol Design (Cont'd)

- Medium Access Scheme:
 Hash-controlled access with slotted contention window:
- Initial wait time and back off time are decided by hash functions.
 - After listening for a δ time
 - idle: transmits
 - busy: transmits with probability p;
 - p increases from 0 to 1 during each cycle

Network Layer Protocol Design

- Relay direction: restricted direction or omni direction
 - correct relay direction may lead to dead end
- Relay distance: unrestricted flooding or bounded flooding
 - Limited hops: May not reachable in limited hops
 - → collided on shortest path, but can reach via detoured path
 - unrestricted flooding
 - → high collision rate, low reachability
 - Is there an optimal point?

Network Layer Protocol Design (Cont'd)

- Proposed Relay Scheme
 - Limited flooding:
 set TTL to be the maximum # of hops allowed
 - TTL: control parameter,
 dynamically adjusted with traffic density

From Network Layer to MAC Layer

- How long can an aircraft use the channel?
 - packet length is limited for fairness
 - some packet may be "truncated"
- Should MAC layer transmit everything from upper layer?
 - Regular application data:
 - Will deliver sooner or later
 - Aircraft state information
 - Only useful when it is delivered in time
 - Data generated periodically
 - If not delivered in previous cycle, better forget it and deliver new data
- How to manage the transmission queue?

Will a FCFS Queue Work?

- Is a first come first served (FCFS) queue fair?
 - What if one packet is late every time?---starve
 - Some important info may need to be delivered immediately, but it may not be served if a FCFS queue is used
- Need a scheme that can dynamically update the order of items in the queue.

Prioritizing Broadcast Queue

- Assign priority to each record based on distance, urgent level, timestamp, aging factor...
- FCFS order within the same level of priority
- Update priority dynamically

Packet in the Receiving Process

Simulation Results: Scenario 1

- 1D stream of A/C flying with average separation & heading angle
- Aircraft positions deviate from normal positions by small amounts
- Reachable nodes through network/ reachable in one hop
 - Increases as flooding range increases
 - Increases slower than linear
- Reachable/connected within MHOP
 - Decreases as flooding range increases

Simulation Results: Scenario 2

- A/C randomly distributed in 2D region; heading angles random also
- Aircraft satisfy minimum separation requirements for flight safety
- Positions updated as the flight progresses
 - Reachable through network/reachable in one hop for various hops
 - 3.5

 low traffic density high traffic desity h

Reachable nodes/ connected nodes Within critical range

Simulation Results: Scenario 2 (Cont'd)

of reachable nodes/# of connected nodes within MHOP

Conclusions

- Information reachability concept & performance measures proposed
- A set of protocols are designed
 - A simple relay scheme can enhance information transmission
 - Medium access scheme: make efficient use of existing radio spectrum
- Simulation studies are conducted.
- Airborne network performance varies with
 - MAC design parameters, relay hops, radio range, traffic density
- Airborne network is shown to provide
 - larger coverage and enhanced information reachability under various simulated traffic scenarios
 - Allows for early safe operation action

Questions?

State Information Packet

- Multiple records in one packet
 - State info for itself
 - One hop neighbors
 - Two hop neighbors
- Record format
 - Header: Call sign, equipment, TTL, more flag, time stamp.
 - Status information
 - Aircraft state variables
 - Position, velocity
 - intents
 - Acceleration or next way point and time
 - environment variables: wind, pressure, and air density
 - Reserved for future extension

0		16	24 31
	call sign	equip	TTL flag
time stamp			
X			
У			
h			
Vx			
∨y			
Vh			
Xnext			
ynext ynext			
hnext			
tnext			
windx			
windy			
windh			
pressure			
density			
optional			
1			